Department of Functionalized Natural Materials, The Institute of Scientific and Industrial Research, Osaka University 大阪大学 産業科学研究所 第2研究分門 自然材料機能化研究分野

Department of Functionalized Natural Materials, The Institute of Scientific and Industrial Research, Osaka University 大阪大学 産業科学研究所 第2研究分門 自然材料機能化研究分野


Must-read articles. You will the top when you read these!

2021/3/12 Add “コースA” &”コースB”
2020/12/5 Add Turback 1983
2020/11/30 delete one article by Nogi
2020/11/14 Nogi


ミクロフィブリル化セルロース / Microfibrillated cellulose

A-1. Microfibrillated Cellulose, A New Cellulose Product: Properties, Uses, and Commercial Potential
Albin F. Turbak, Fred W. Snyder, And Karen R. Sandberg
J. Appl. Polym. Sci., Appl. Polym. Symp. 37, 815 (1983)
Turback 1983
Introduction video


高強度複合材料 / High strength composites

A-2. “The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites” by Yano (2004) cited 424
Introduction video

ナノファイバー透明複合材料 / Transparent nanofiber composites

A-3. “Optically transparent composites reinforced with networks of bacterial nanofibers” by Yano (2005) cite 732
Introduction video
A-4. “Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix” by Nogi (2005) cited 152
Introduction video
A-5. “Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry” by Nogi (2008) cited 361
Introduction video

セルロースナノファイバー製造方法 / Production of cellulose nanofibers

A-6. “Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose” by Saito (2006)
Introduction video
A-7. “Obtaining cellulose nanofibers with a uniform width of 15 nm from wood” by Abe (2007) cited 603
Introduction video 準備中
A-8. “The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics” by Iwamoto (2008) cited 334
Introduction video 準備中

ナノペーパー&特性 / Nanopaper & its properties

A-9. “Optically Transparent Nanofiber Paper” by Nogi (2009) cited 675
Introduction video
A-10. “Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation” by Fukuzumi (2009) cited 825
解説動画 準備中
Introduction video 準備中
A-11. “High thermal stability of optical transparency in cellulose nanofiber paper” by Nogi (2013) cited 90
Introduction video 準備中
A-12. “Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices” by Yagyu (2015) cited 62
解説動画 準備中
Introduction video 準備中
A-13. “Hazy Transparent Cellulose Nanopaper” by Nogi (2017) cited 37
解説動画 準備中
Introduction video 準備中
A-14. “Nematic structuring of transparent and multifunctional nanocellulose papers” by Saito (2018) cited 34
解説動画 準備中
Introduction video 準備中

エアロゲル / Aerogel

A-15. “Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators” by Saito (2014) cited 264
解説動画 準備中
Introduction video 準備中

セルロースナノファイバーの特性 / Properties of cellulose nanofibers

A-16. “Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system” by Saito (2005) cited 157
解説動画 準備中
Introduction video 準備中
A-17. “An ultrastrong nanofibrillar biomaterial: The strength of single cellulose nanofibrils revealed via sonication-induced fragmentation” by Saito (2013) cited 314
解説動画 準備中
Introduction video 準備中

セルロースナノファイバー変性処理 / Chemical treatment of cellulose nanofibers

A-18. “Property enhancement of optically transparent bionanofiber composites by acetylation” by Nogi (2006) cited 93
解説動画 準備中
Introduction video 準備中
A-19. “Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water” by Saito (2014) cited 40
解説動画 準備中
Introduction video 準備中
A-20. “Hydrophobic, Ductile, and Transparent Nanocellulose Films with Quaternary Alkylammonium Carboxylates on Nanofibril Surfaces” by Saito (2014) cited 73
解説動画 準備中
Introduction video 準備中



B-1. “TEMPO酸化”
Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose
Saito et al., Biomacromolecules, 8, 2485–2491 (2007)
B-2. “ACC”
Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers
Kondo et al., Carbohydrate Polymers, 112, 284-290 (2014)


B-3. “酸素バリア性”
Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation
Fukuzumi et al., Biomacromolecules, 10, 162-165 (2009)
B-4. “透明性・強度・熱膨張率”
Transparent Nanofiber Paper
Nogi et al., Advanced Materials, 21, 1595-1598 (2009)


B-5. “凍結乾燥”
Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates
for functionalities
Ikkara et al., Soft Matter, 4, 2492–2499 (2008)
B-6. “蒸発乾燥”
Ambient-Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use
for Aerosol Collection and Templates for Transparent, Flexible Devices
Ikkara et al., Advanced Functional Materials, 25, 6618–6626 (2015)
B-7. “一方向凍結乾燥”
Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths
by Unidirectional Freeze-Drying
Nishihara et al., ACS Nano, 10, 10689-10697 (2016)


B-8. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis
Koga et al., ChemSusChem, 10, 2560-2565 (2017)


B-9. Self-Densification of Highly Mesoporous Wood Structure into a Strong and Transparent Film
Zhou et al., Advanced Materials, 32, 2003653 (2020)


B-10. “リサイクル”
Recyclable organic solar cells on cellulose nanocrystal substrates
Kippelen et al., Scientific Reports, 3, 1536 (2013)
B-11. “生分解”
High-Performance Green Flexible Electronics Based on Biodegradable Cellulose Nanofibril Paper
Ma et al., Nature Communications, 6, 7170 (2015)

⑦Solar vapor generation

B-12. A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation
Deng et al., Advanced Materials, 27, 2768-2774 (2015)


B-13. “バクテリアセルロース”
Highly conductive and stretchable conductors fabricated from bacterial cellulose
Yu et al., NPG Asia Materials, 4, e19 (2012)
B-14. “TEMPO酸化ナノセルロース”
Wood-Derived Ultrathin Carbon Nanofiber Aerogels
Yu et al., Angew. Chem. Int. Ed., 57, 7085–7090 (2018)


B-15. “ポリイミド”
Laser-induced porous graphene films from commercial polymers
Tour et al., Nature Communications, 5, 5714 (2014)
B-16. “木材”
Laser-Induced Graphene Formation on Wood
Tour et al., Advanced Materials, 29, 1702211 (2017)
B-17. “布、紙、パン”
Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food
Tour et al., ACS Nano, 12, 2176-2183 (2018)

【おまけ / Additional】

非ナノファイバー透明複合材料 / Transparent composites without nanofibers

C-1. “The transparent crab: Preparation and nanostructural implications for bioinspired optically transparent nanocomposites” by Yano (2012) cited 29
A-16. “Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance” by Bergulund (2016) cited 139

エアロゲル / Aerogel

C-2. “Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters” by Nemoto (2015) cited 101

セルロースナノファイバー変性処理 / Chemical treatment of cellulose nanofibers

C-3. “Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites: Dependence on Acetyl-group DS” by Ifuku (2007) cited 268

キチンナノファイバー製造方法 / Production of chitin nanofibers

C-4. “Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin” by Saito (2008) cited 203
C-5. “Preparation of chitin nanofibers from squid Pen β-chitin by simple mechanical treatment under acid conditions” by Saito (2008) cited 199
C-6. “Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells” by Ifuku (2009) cited 300
C-7. “Fibrillation of dried chitin into 10-20 nm nanofibers by a simple grinding method under acidic conditions” by Ifuku (2010) cited 132
C-8. “Simple preparation method of chitin nanofibers with a uniform width of 10-20 nm from prawn shell under neutral conditions” by Ifuku (2011) cited 79

© Department of Functionalized Natural Materials ISIR, Osaka University